
__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 1

Test Automation:

From Record/Playback to Frameworks

John Kent M.Sc.

Email: john.kent@simplytesting.com

Web: http://www.simplytesting.com

Abstract
Script-based automated software testing tools which act upon User Interfaces (UI) have

been available since the early 1990’s. Organisations have become increasingly aware

of the short-comings of these tools as they are out-of-the-box. Maintenance is a key

issue in automation. The format and behaviour of a system’s user interface changes

with each new release and so the automated tests must also change. The basic

approaches to building test automation code inevitably lead to an excessive

maintenance burden as the size of the test suite increases. Another problem is outlined

by the test automation paradox: the automated tests must be tested. Some automation

structures lend themselves to producing highly tested automation code and some do

not. Software engineering principles have been applied to the building of automation

code structures or frameworks in order to overcome these and other problems. Test

automation frameworks are gaining acceptance and they can offer keyword data-driven

automation with actions and navigation specified in the test data. They can minimise

the maintenance overhead, provide highly tested code and even offer script-less

automation. This paper discusses the different automation code structures and their

relative merits. It describes test frameworks and reviews progress in the field.

Introduction
This paper concerns itself with script-based test automation tools which act upon User Interfaces (UI).

This includes tools such as WinRunner, QuickTest Pro, QARun, TestPartner, Robot and Functional

Tester, amongst others. The comments here do not necessarily apply to test frameworks such as

NUnit, JUnit, etc which are for testing objects at the unit test level.

Software test automation seems to be on every Test Manager's list of things to have. Almost every test

organisation wants it. The test tool companies have made themselves large by selling tools to do it. It

is often, mistakenly, the first thing people start with when they embark upon improving their testing

procedures. All of this illustrates how attractive test automation is—not how easy it is. This attraction

to test automation is strange when you consider how little success it has had. How many automation

projects return real benefits for their investments? In automation circles there has been a debate about

why the success rate is so low. Is it because the wrong tools are being used? Is it because of a lack of

management commitment? Is it a failure to manage expectations? All of these things are important,

but the major factor in the success, or otherwise, of automation projects is the way in which the tools

are used. The structure of the code developed using these tools can either overcome or exacerbate the

underlying problems of test automation.

Scripted tools running under Windows have only been around for a short while. Microsoft Test (later

Visual Test) version 1.0 came off beta test in early 1992
9
, at about the same time as many of the other

tools we now have. The technology is difficult to use, but new approaches to its use are evolving and it

is an exciting time to be involved in this area. One element in these new ways to build test automation

is a software engineering approach to building test automation which has led to test frameworks. This

paper builds on one of the authors’ previous papers
16, 18

 in the light of growing acceptance of test

automation frameworks.

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 2

How Scripted Automation Tools Work
These test tools work by acting on the System Under Test’s (SUT) user interface. A user interface

consists of many discreet objects.

User Interface Objects
Windows or screens which form a user interface (UI) for a computer software system are collections of

user interface objects. In Microsoft Windows these objects are called Windows Controls. In Unix

XWindows they are called Widgets. Green screens have UI Objects called Fields. Many different

types or classes of window control are available. Standard classes of Windows controls include:

• Text-boxes

• Combo-boxes

• Buttons

• Option buttons

• Check boxes

• Menus

• List-boxes

• Grids

There are many more types of controls, which may, or may not be implemented in non-standard ways.

The user interface also includes the keyboard and mouse which are used to perform actions on UI

Objects.

Recording, Scripting and Playing-Back
The automated test tools we are interested in here, perform actions on UI objects. These actions are

performed by running a script. Scripts may be recordings of user actions. They may have been

programmed (or scripted) manually in the language of the test tool. The ability to record scripts is

available with most of the test tools on the market. The test tool is set to record mode and the user

performs actions on the SUT. The recording or script will consist of a list of actions. This can then be

replayed back into the SUT’s UI, thereby executing tests against the system.

User Interface Object Functions
The recorded or scripted actions are written using functions which form part of the test tools scripting

language. These functions act on the UI objects. Below is a fragment of IBM Rational Robot recording

where an 'OK' button is clicked and a File|Exit menu item is selected.

PushButton Click, "Text=OK"

MenuSelect "File->Exit"

In WinRunner TSL the same actions look like this:

button_press ("OK");

menu_select_item ("File;Exit");

In QARun the actions look like this:

Button "OK", 'Left SingleClick'

MenuSelect "File~Exit"

The above demonstrates how similar the test tools are in that they all provide functions which perform

actions on UI objects. The test tool attempts to identify each UI object uniquely, using a variety of

different object properties.

UI Object Maps
In order to improve script maintainability, some tool vendors have built UI Object Map functionality

into their test tools. A UI Object Map lists the objects in each window/page. Each UI object is given a

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 3

logical name and also contains the information that the test tool needs to identify that object uniquely.

The test tool script uses the logical name in scripts when performing actions on UI Objects. If the UI

object properties change so that the identification changes, only the Object Map is changed; not

references to it within the scripts. The UI object map is called the GUI Map in WinRunner and the

Object Repository in QuickTest Pro. IBM Rational Robot does not have UI object map but

Compuware’s QARun does. The figure below shows a logon window and the WinRunner GUI Map

which defines the UI Objects for that window.

Figure 1: A window and its equivalent WinRunner GUI Map

Figure 1 (above) shows a Login window and its definition in the WinRunner GUI Map. You can see

that the OK and Cancel buttons are in the map along with two textboxes called txtPassword and

txtUserName, which correspond to the objects in the window. The OK button is selected and the

‘Physical Description’ is given. The OK button is identified by its class (‘push_button’) and its vbname

(‘cmdOK’).

Record/Playback
As we have already seen the tools can create automated tests by recording the actions a user performs

against a user interface and these actions can then be played-back into the UI, hence the term:

Record/Playback. The recorded script will be a series of actions in the tool's language. As an example,

the following is a recording of actions against the Login window shown in Figure 1.

Login

 set_window ("Login", 2);

 edit_set ("txtUserName", "JohnSmith");

 password_edit_set("txtPassword", "hygsfzgsbzotmyisivjs");

 button_press ("OK");

The code above again shows the functions used to provide actions against the UI Objects. The edit_set

function is used to set the text in the txtUserName textbox to ‘JohnSmith’. Once the script is recorded

it can be modified manually by scripting (programming) and all the standard programming constructs

such as conditionals, loops, variables, etc can be used.

Basic Data-Driven
A more mature architectural approach called ‘data-driven’ automation was developed very early on in

the history of this type of test tool. In data-driven automation the test data is held in separate files

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 4

which are read in by the automated test code and then used as input into the SUT. See the example test

data file below in Fig 2. It has a heading line and you can see that column A contains the surname,

column B the first name, etc, etc.

Figure 2: Simple ‘data-driven’ data

In the test tool there will be a user programmed function which repeatedly reads in this data and then

inputs it into the ‘add customer’ windows or screens. The program (or a driver program) might then

call another program, which would open another file and do the same thing for another business entity.

For example, automation of a system which manages insurance policies may look like this:

(i) The driver program calls the test function add_customer.

(ii) The add_customer program navigates to the customer screens (windows or web pages) and

repeatedly reads the customer data and inputs it into the System Under Test (SUT).

(iii) The driver program then calls the add_policy function.

(iv) The add_policy function repeatedly reads the policy data file and inputs it to the policy

screens of the SUT.

and so on for each business task…..

Each action like add_customer will be performed by a function which must be written (scripted or

programmed) by an automation specialist. User written functions are a way of introducing code re-use

into the automation code. In record/playback each automated test is a long sequence of recorded

actions with the test data hard-coded. If you want another automated test, you record another script

which gives two scripts to maintain as the SUT UI changes over time. In the data-driven situation, the

test data can contain a vast variety of different data combinations and so you can increase your test

coverage in a way that simply would not be possible with manual testing. You can add more tests

without having to write anymore test script (albeit only for the actions you already have). In the above

example you only have two test programs to maintain: add_customer and add_policy, but you can now

exercise both of these business scenarios automatically, repeatedly and also increase the test coverage

of the code in comparison to Record/playback.

The test programs can also be made to check values in the UI, automating the examination of expected

results.

An improvement to this basic approach is to control the order test data is input into the SUT. A control

file is introduced which specifies the data sequence. This instructs the automation for example, to add a

customer then add a policy for that customer and then add another customer, and so on. In this case the

sequence of actions looks more like that of a manual test.

Key Features of Software Test Automation
Automation Is Software Engineering
The tool vendors promote these tools as record/playback and they use the tester-friendly term scripting

to describe the programming process. So what is a script? ‘Script’ is another word for Program—they

are the same thing. These test tools have scripting languages that are usually 'VB like' or 'C like' and

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 5

contain all the standard programming structures such as statements, variables, conditionals and

operators. Script-based test automation tools are, in fact, program development environments with

compilers or interpreters, code editing and debugging facilities like any other IDE. What makes them

test automation tools is that they have special functions in the test language which can ‘talk’ to your

system's UI Objects. QuickTest Pro for example, uses VBScript as its scripting language which is

hidden in the standard view but revealed if the ‘Expert View’ tab is selected. What we build when we

create test automation is software. Test automation is, therefore, Software Engineering. This fact is

fundamental to the activity of building and using software test automation and should shape our

thoughts about the activities we carry out. Software products in software engineering have to be

developed, maintained and as testers we should be well aware that they must be tested as well.

To emphasise and summarise: the test automation we build, no-matter what structure it is built in, must

be:

• Developed

• Maintained

• Tested

Because software test automation using script-based tools is software engineering, the tools are really

program/playback.

The Software Test Automation Paradox
The last item in the list of software engineering tasks above, leads us to something of a paradox. This is

that we must ‘test the automated tests’. When we run an automated test against a new release of the

software under test, we are testing two software systems. Firstly we are testing the SUT. Secondly and

there is no way around this, we are testing the test automation. The test automation is a software system

that has a requirement to be able to test the latest release of the SUT but this automation itself may be

faulty and failures may occur. This paradox implies that we must build automation code structures in

such a way that they can be tested to some degree, so that we can have a high degree of confidence that

the automation software is reliable.

Comparison of the record/playback and data-driven approaches nicely illustrate how some automation

structures become more tested with use. In Record/Playback, each test is run once per release and that

means each script is run once and so it is not exercised very often compared to the data-driven situation.

Data driven functions are run iteratively as each line of test data is processed. This increases our

confidence in the reliability of the test code. If there are possible synchronisation problems, for

example, they are more likely to become apparent in the data driven case. Other code structures in

more advanced frameworks give more highly tested code and therefore, even more confidence in the

test automation’s reliability.

It is ironic that these tools are used by test teams who often do not recognise that the software produced

using these tools needs to be tested. As testers we know that we must strive for the highest test

coverage we can manage for any software product we have—including test automation software.

The paradox that we must ‘test the test automation’ should not be underestimated. It is one of the two

fundamental problems that must be resolved for successful, large-scale test automation.

Maintenance of Automation Code Is Critical
The other fundamental issue in automation is that of test code maintenance. With test automation we

are interested in testing the system as it is changed. Generally, the user interface objects and behaviour

change with each release of the system and so you must change your automation to work with these

changes. In test Record/playback you are interested in subsequent releases of the SUT because you

have already proved that the system does what you've recorded. The payback with automation starts

when you test later releases of the system. In short: payback only comes with playback. If we cannot

maintain our automated tests and bring them up to date quickly enough, we cannot run the automation.

Maintenance is crucial to test automation and this fact is one of the main motivating factors in building

test automation frameworks for user interfaces.

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 6

So how do we measure maintainability of automated tests? One measure we can use is the UIObject-to-

Reference Ratio. This is a ratio of the number of UI Objects automated versus the number of times they

are referenced in the automation code. Imagine a number of tests created using Record/Playback which

all include automation of the logon window in Fig 1 (above). Each and every script would have a

reference to the username textbox. If the username textbox changed in some way, changes would need

to be made to every script (GUI maps may go some way to improving this situation but not for every

change). The ideal for the UIObject-to-Reference Ratio is 1:1 or one reference in the test code for each

UI Object in the SUT.

Limitations of Basic Approaches
Limitations of Record/Playback
It is now generally accepted in the automated testing community that it is not practical to create

automated tests by simply recording them with script-based tools
2, 3, 4, 5, and 6

. Defining what exactly is

wrong with Record/Playback has not been straight-forward. The problems are seen as:

(i) Recording produces scripts that are difficult to maintain because they consist of long lists of

actions on objects in your user interface which are then difficult to decipher.

(ii) The recording may not re-run due to synchronisation problems. Synchronisation is an

important issue in automated UI testing. The script may need to wait for a window to

appear. If it doesn’t appear in time the script may just carry on attempting to perform

actions on the wrong windows. Synchronisation points need to be programmed into the

script. Try recording just one hour of input with one of the modern GUI script-based tools

and then see how well it replays. It is unlikely to run all the way through. Another

enlightening exercise is to try to fix the recorded script in order to see what you would have

to do to get it to replay correctly and how long it would take you.

(iii) With Record/Playback you end up with data hard-coded into your test program. This is

not a good thing according to software engineering principles
6
.

(iv) Automated tests must cope with what may happen, not simply with what happened when

the script was recorded. One of the objectives of running tests against a system is to find

errors that were not there before. The automated tests must have code that can recognise

unexpected errors and this must be programmed into them. With basic Record/playback, if

an error is encountered during a test run it is likely that the whole test sequence will come

to a stop. It is indeed ironic that, although the objective of automated testing is to find

bugs, if the System Under Test (SUT) behaves in an unexpected way—i.e. there are bugs—

then these automated tests will not work. A test cannot therefore, simply be a recording

played back into the SUT; rather it should be an intelligent interaction between the test tool

and the SUT.

(v) Record/playback scripts are not as highly tested as with other code structures that take

advantage of code re-use.

The reason it is difficult to pin down the fundamental problem with Record/playback is because it can

actually work on a small scale. The problem of record playback is really a problem of scale. As stated

above, when a test is automated using recording, script lines are generated. Thus the number of lines of

script you have is proportional to the number of tests you automate and we get the relationship:

This says that the number of lines of automation code is proportional to the number of tests.

The more tests you record, the more automation code you have to maintain until you reach a point

where the maintenance burden will inevitably become too great for your budget. See Fig 3 which

shows this relationship graphically. For low numbers of tests, maintenance of the scripts, whilst

difficult, is possible. However, if an organisation is to invest large sums of money in test automation, it

is highly likely to want to automate a large number of tests in order to produce a return on its

investment. An automated regression test pack is likely to contain enough tests in it to take us well up

the graph in Figure 3.

stsNumberOfTeeomationCodLinesOfAut ∝

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 7

Figure 3: A graph of LOC against the number of tests automated

The graph also shows that the code has zero re-use, because each test has its own dedicated script and it

is difficult to get highly tested code with such a structure. It is very difficult to see how we could test

recorded scripts enough to give high reliability.

So it is really the cost of maintenance that condemns Record/Playback to little more than a sales

gimmick. Yes, it is possible to maintain recorded automation code but it is the cost of doing this for

large recorded test packs that makes it impractical. Record/Playback may work for very small scale

automation but for large, real-life automated regression testing it is a non-starter. This also applies to

manually programmed scripts where the automation script to test ratio is 1:1. The graph above shows

that Record/playback offers the worst possible maintenance situation of one script to one test.

Limitations of Data-Driven
Look again at the data in the table in Fig 2. It looks nothing like a series of tests and—it isn’t. It is

simply test data. Most regression or system tests are not about repetitively inputting data into the user

interface, rather they seek to fully exercise all of the business functionality of the system under test in a

realistic way. Data-driven automation does not provide a good platform for this.

Automated testers have recognised this for a while and some provide a solution for it by adding another

layer to the automation. This uses a control file to specify the order in which data is used from the

various data files. An example of this is given in the data-driven section above where an insurance

system has a control file to select the customer data to add, then to select the insurance policy data to

add for that customer and so on. This is a step in the right direction as it gives Test Analysts the facility

to specify actual tests rather than just a repetitive data load. This approach however, becomes a mess

architecturally.

Advanced Frameworks
Since the introduction of script-based UI automation tools, a number of test automation frameworks

(3, 4,

5, 6, 8, 10, 11, 12, 13, 16, 17, 18)
 have been proposed. An important aim of advanced automation frameworks has

been to move the creation of automated tests away from the test tool language to higher levels of

abstraction. These frameworks allow Test Analysts to specify tests without having to know anything

about the automated test tool and how to write scripts using it. Advanced frameworks also reduce the

UI Object-to-Reference Ratio towards 1:1 by reducing the referencing of UI Objects.

What is a Framework?
A test framework can be considered to be software architecture for test automation. Linda Hayes in the

Automated Testing Handbook
19

 states that:

 “The test framework is like an application architecture”

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 8

Mark Fewster and Dorothy Graham
15

 talk in terms of a Testware Architecture. This paper’s author has

been using the term Automation Architecture for some time
5, 16, 18

, however the term test automation

framework appears to have gained general acceptance.

If a framework is a software architecture, what is a software architecture? Bass, Clements, and Kazman

of Carnegie Mellon’s Software Engineering Institute (SEI) state in their book Software Architecture in

Practice
21

 that:

“The software architecture of a program or computing system is the structure or structures of the

system, which comprise software components, the externally visible properties of those components,

and the relationships among them.”

So a software architecture is the structure of the source code and the relationship between the

components. In civil engineering, the architecture is the overall structure of the building. The

architecture provides the space for the functional use of the building and ultimately, is the major factor

in how successful it is at fulfilling its purpose.

Taking the definition literally, Record/Playback and data driven automation could be said to have

software architectures and are therefore, test automation frameworks—just very poorly designed ones.

The term Framework however, is usually applied to one of the more sophisticated automation code

structures.

Poor software architecture is one of the biggest factors in test automation project failures. Design of

software architecture is specific skill based on programming knowledge and experience. Automation

projects can become problematic if the automation builders do not work towards a sound architecture.

They can become too focused on the low level detail to be able to see the overall structure and may not

have the software engineering experience to design architectures. They may be builders not architects.

A good test automation framework provides structures for logging, error reporting and allows recovery

to be incorporated (dropping failed tests, navigating the system to a base point and continuing with the

next test). It will have libraries of reusable functions much in the same way as any other software

system. Most importantly of all, its structure will minimise the code maintenance overhead and provide

a platform to create testable structures. It is the starting point for success with test automation.

Examples of test automation frameworks/architectures:

• ATAA from Simply Testing

• TestFrame from LogicaCMG

• EMOS_GPL open source

• SAFS open source

What is Required?
To summaries the above, the test automation frameworks we build must include:

(i) A sound software engineering approach

(ii) Highly maintainable automation code structures – a UIObject-to-Reference Ratio as close

to 1:1 as possible.

(iii) Automation code structures which allow the code to be highly tested

(iv) An ‘elegant’ way to create tests - a way to automate tests easily

An automated test framework should also provide:

(v) A script structure that is not inherently error prone.

(vi) Ability to recover from unexpected conditions.

(vii) Basic infrastructure components such as logging

(viii) Ability to run tests from multiple PCs at once

The test frameworks detailed below, implement all of the above requirements to some degree. They

provide a stable basis for easily maintainable, testable and error free script code.

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 9

Keyword Driven Automation
Advanced test automation frameworks are really the logical place to go to when you take a software

engineering approach to building test automation. So how do they differ from the basic data driven

approach?

In order to illustrate this, let’s first look again at the data used in data driven automation (see Figure 2).

In this example of Excel test data, every line (except the heading line) has customer details in it. The

table in Fig 2 is really just data. All the decisions on what to do and when, are taken by the automation

code; the data does not give instructions to the code on what to do.

What advanced automation frameworks do, is take (at least some) of the navigation and actions out of

the test programs and put them into the test data. The test data becomes the script—the sequence of

actions to be followed. It tells the automation code what to do and in what order. When the Test

Analysts create the test data they can, to some degree, choose what to do and in what order, just as they

would when creating a manual test. The level of choice is dependent upon how sophisticated the

framework is.

Figure 4 illustrates data from a keyword-driven framework. Note that if there is a hash at the beginning

of the left hand column which means that the line is a comment and not test data. Lines beginning

Supplier_Add or Stock_Item_Add are the actual test data which will be read by the automation code.

The format of the file is very different to that in the data-driven case in Figure 2 because the meaning of

the data in each column is dependent upon what type of line it is and this is defined in the first column

which contains the keyword. The commented lines give the format so that the Test Analyst knows what

each column represents. For example in the seventh line which has a Stock_Item_Add keyword,

column four is the ‘Name’ field because this is a Stock_Item_Add format. Thus the Test Analyst can

choose the order of the actions when creating the Excel data.

Figure 4: Advanced architecture data

When the automation test runs, a driver program reads through the data and calls the function specified

in column 1, passing it the data for that particular line. For example, there will be a function

Stock_Item_Add, which will have been written by the test programmer (scripter) in order to perform all

of the actions required to add a stock item. These functions are known as Wrappers.

Wrappers
Wrapper is an OO term that means some software that is used to interface with an object. In

programming you call the wrapper if you wish to use the object but don’t want to, or are unable to call

the object directly. The object is wrapped by the wrapper.

In test automation, wrappers are programs or functions written in the language of the test tool which

perform discreet automation tasks as instructed by the test data and actions. They implement the

keywords and provide the interface between the test data and the user interface. In our previous data

example, four wrappers will have been written – Stock_Item_Add, Loc_Add, Supplier_Add and

Stock_Loc_Add. The Stock_Item_Add wrapper for example, is a function which performs all of the

#Supplier_Add Sup Name Description Type External Flag

Supplier_Add SC-SUP00 SC-SUP00 Supplier Company OFF

Supplier_Add SC-SUP01 SC-SUP01 Supplier Company ON

Loc_Add Loc Name Description Corp Corporate Y/N

Loc_Add SC-SXX-1 Test LO Stock Room only ON OFF

SI Name Item Description Name External Flag

Stock_Item_Add SC-STCK00 CABLE COAX Test SI.

Stock_Item_Add 99 PUBLICATION BOOK Wind in the ...

SI Name Description Type Quantity

Stock_Loc_Add SC-STCK00 SC-SXX-1 1-01 10

Stock_Loc_Add 99 SC-SXX-1 1-01 10

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 10

actions necessary to perform the business task of adding a stock item. These are business level

wrappers – they ‘wrap’ business scenarios and are written by the test programmer (scripter). The

keyword tells the automation which wrapper to call.

There are two distinct types of keyword/wrappers: Business Scenario Level Wrappers and Window

Level Wrappers. Dwyer and Freeburn
12

 talk of ‘Business Object Scenarios’ and ‘Window-centric

Scenario Libraries’. This is dependant upon how the SUT is carved up in an automation sense–at the

window level or the business scenario level.

Business Scenario Level Keywords/Wrappers
The data in Figure 4 is at Business Scenario Level. With this type of wrapper, one automation function

is written in the test tool for each business scenario. These functions ‘wrap’ the business scenarios.

Usually a functional decomposition of the system is the first step in building this approach (see

Zambelich
3
). In a functional decomposition, the basic business scenarios of the system are defined.

Then the wrappers for each business task are manually programmed (scripted) and the data format for

each task is created.

As you can see from the above example, Business Object Scenario Level test data is at the business

language level and therefore understandable by end users, which is a great advantage.

Window Level Keywords/Wrappers
With this type of keyword/wrapper there is one automation function that deals with each window,

screen or web page in the system—it acts as a wrapper for that screen/window. It handles all of the

input and output (getting expected results) for its window or screen. See Figure 5 for an example of

window level data. Again, lines with a hash in the left hand side are comments, used to show the

format of the data. The other lines are the test data which are passed to the automation wrappers for

that particular screen. Unlike the business level data, window level data conforms to a set format:

(i) The column headed ‘Wrapper’ specifies the screen or window to be acted upon.

(ii) The ‘Object’ column contains the name of the User Interface Object.

(iii) The Action column gives the action to be performed on that UI Object.

(iv) The ‘Data’ Column contains any data that is to be used.

In a sense the Keyword is made up of the first three of the above. Each class of UI Object has certain

allowable actions against it.

Figure 5: Screen\Window Level Advanced Architecture data

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 11

In line 3 of the example above the ‘Open Account’ object is clicked, then in line 4 the title combobox is

set to the row which equals the text ‘Mr’, and so on….

The actions can also check values in the UI Objects so the Test Analyst could specify actions like

'Check' that the object contains the data equal to 'Smith'.

One of the biggest advantages of Window Level Keyword/Wrappers is that all of the user interface

objects can be made available to the test analyst in Excel and thus the analyst has complete control over

what the navigation and actions should be, rather than being dependent upon what the test automation

programmer (scripter) has put into the wrapper, as with Business Object Level Wrappers.

Maintenance with the Keyword/Wrappers Approach
In keyword-based frameworks the wrappers are written for each business scenario or window in the

system under test. Thus we get the relationships:

For business scenario level wrappers the number of lines of automation is proportional to the number of

business scenarios. With window level wrappers the number of lines of automation is proportional to

the number of windows in the system. In Figure 6 we can see that the number of LOC goes up

proportionally with the number of tests, until all the windows or business scenarios have been

automated after which the LOC then remains constant as more tests are automated. Figure 6 assumes

that window or business scenario wrappers are built progressively as more tests are added (which might

not quite be the case), however, the graph shows that a point is reached when effectively all of the

automation code has been written.

Figure 6: Automation LOC against the number of tests

UI Object Map Based Frameworks
The Limits of Program/Playback
If we implement a wrappers based framework by programming Business Scenario Wrappers or the

Window Wrappers, we will still have to maintain the automation code because of changes to the UI of

the SUT. Just as we hit limits with record/playback where it becomes impossible to maintain the

automation code for a large system, we can hit limits with program/playback in wrapper based

ndowsNumberOfWiLOC

OR

zScenariosNumberOfBiLOC

∝

∝

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 12

frameworks. These limits are limits in terms of being able to build the automation pack, and limits in

terms of being able to maintain it.

For small systems we don’t hit these limits. Imagine, for example, a trading system which has only

fifteen windows. Assume 20 UI objects per window and you get 20x15= 300 UI Objects. If you are

using window wrappers that takes 8 lines of code for each UI Object, then you get 300 x 8 = 2400LOC.

This is manageable and maintainable within many test team budgets (the full picture of maintainability

of automation code needs to take into account the rate of change of the user interface but we don’t need

to go into that in detail here). Most of the systems we are testing, however, are large and for these

systems we need to find easier ways to build automation.

Map Based Automation
Once we arrive at windows level wrappers, we are one small step away from removing SUT specific

scripting of automation code from the process altogether. This may sound strange at first but it is

possible. The way to achieve this is by having a driver program which interprets the ‘UI Object Map’

of the user interface. We discussed UI Object Maps above. Many of the tools separate out the user

interface object definitions from the actual scripts or code and put them in a ‘Map’. The object

identifiers (the way the test tool recognises which UI object is which) are defined in the map and the

scripts or code use a logical name for each object. WinRunner for example has the GUI Map which

contains UI object definitions. WinRunner TSL code uses the names of these mapped objects, rather

than the actual object identifiers themselves.

UI Object Map based frameworks have an automation engine which, when fed with instructions from

test data, recognises which object in the map is to be acted upon and then performs the specified action

upon the object in the user interface.

Look at the test data shown below. The automation engine reads in each line of this data. It knows

which window the instruction is for and it has the logical name of the object within that window. The

actual way the object is identified is defined in the UI object map but the automation engine does not

need that information, only the name of the object. The automation engine reads the UI object Map to

find out what class the object is and then calls a Control Wrapper which deals with objects of that class

and performs the required action upon the object, using the data if required. No automation code for a

specific instance of an object is needed, only for classes of object.

Window Object Action Data

Login UserID SET user1

Login Password SET password

Login OK CLICK

MDIMain Open CLICK
Figure 7: Test data for map based automation is at the UI Object level

Control Wrappers
The actions are performed on the UI Objects by Control Wrappers – functions which wrap UI object

classes. A control wrapper has code which implements all the actions for a particular class of UI object.

There will be a control wrapper for each class of UI object and all of the actions performed on the user

interface are performed by the control wrappers. Nagle
17

 calls control wrappers ‘Component

Functions’. When the automation is running, the engine gets a line of data, gets the UI object’s class

from the map and calls the control wrapper for that class of UI object, passing the actions and data to it.

The importance of control wrappers should not be underestimated. Control wrappers are the key to

solving the two fundamental test automation problems of maintainability and tested-ness (i.e. the

automation paradox). Once a control wrapper has been written for a class of UI object, it can then be

used in any automation project where that class of wrapper is used. This is automation code re-use

taken to its ultimate extreme.

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 13

The Maintenance Problem Solved By Control Wrappers
The maintenance problem is addressed by control wrappers because, when the system under test’s UI

changes, only the UI object map and the data have to be changed, not the control wrappers. Because a

control wrapper automates a class of UI object, it only needs to be changed when the behaviour of that

class of UI object changes, which is very rare. A .Net application may have changes to its user

interface in a new release, but changes to the behaviour of the classes of windows controls are very

unlikely to happen. For example, Button objects in Windows can be clicked. Another possible

automation action is to check that the text of a button is equal to something. A third action could be to

check that the button is enabled. All of these actions will be provided by the Button control wrapper.

The Button UI object class behaviour is not, and has not been for quite some time, subject to change.

The behaviour of textboxes, combo-boxes, list-boxes, option buttons, radio buttons and other standard

windows controls are similarly constant. For a particular development platform such as .Net or Delphi

or HTML in Internet Explorer, the behaviour of the UI objects is virtually unchanging. A Delphi

combo-box may behave differently to a .Net combo-box and so will require different control wrappers

but once these control wrappers are built and tested, they are unlikely to need to be changed.

The only time control wrapper automation needs to be changed is when new UI objects classes are

introduced or when new actions for UI objects are required. When new UI objects are introduced, then

new control wrappers for those classes have to be written. When new actions for UI objects are

required, the code to perform the actions has to be added to the control wrapper for that class.

The Testedness Problem Solved By Control Wrappers
As we have seen, the actions for each UI object type are always performed by the control wrapper for

that class of UI object. For a Windows application with 1000 textboxes in its user interface, all the

actions on all of the textboxes in all of the windows will be performed by just one small piece of

automation code—the textbox control wrapper. So these control wrappers are tested by testing each

action on each UI Object type. The more the control wrappers are used, the more highly tested they

become.

Maintenance with the UI Object Map Approach
Map based automation frameworks contain no code specific to the SUT. The UI of the SUT is defined

in the UI Object Map and the control wrappers perform all of the actions. This means that the number

of lines of code in the framework is fixed. The number of LOC is not proportional to the number of UI

objects in a system or even the number of windows. Actually the number of LOC is proportional to the

number of different UI Object types or classes:

If a new UI Object type is added to the system under test, then a new control wrapper would have to be

built. Also, if a new action on a UI Object is required, that would also have to be coded. However,

over time, it is likely that for a development environment (HTML objects in a web page, for example)

the introduction of a new class of UI Object will be fairly rare and a mature framework is likely to

contain control wrappers for all the classes of UI Object. Thus, in practical terms, we can consider the

number of LOC to be constant (see graph below).

sesObjectClasNumberOfUILOC ∝

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 14

Figure 8: LOC versus number of tests for map based automation frameworks

Thus maintenance of this type of automation framework only involves keeping the map and the test

data up-to-date with the changes to the system under test. Not only can you create more tests without

having to build automation code, you can define more windows/screens/web pages in the GUI map and

not have to increase the number of code lines at all (unless a new class of UI Object is introduced). All

that is necessary is to define the new windows in the UI Object Map. In fact you could use the same

automation engine on many different systems with the same UI Object Classes, without having to write

any more automation code.

Test Re-Use
The test data for UI Object Map based test automation in Figure 7 can be considered to be at quite a low

level. UI object map based frameworks can offer the ability to reuse test automation data at a higher

level of abstraction: i.e. at the business language level. This also means that test data can be treated as

an object itself and re-used.

Automated Map Generation
A further saving can be made in the creation and maintenance of test automation. UI object maps can

be generated automatically by examination of the SUT’s user interface. This can be done by building

software to extract the UI definitions from a variety of sources, including from source code or from the

.exe. Microsoft’s .Net provides technology called Reflection which can access an application’s user

interface from its .exe file or a running application
23

. Once the UI objects have been extracted, UI

object maps can be generated. This technique is only successful for pre-defined, non-dynamic user

interfaces. Systems where the UI objects are generated as the system runs (as in many web systems) do

not lend themselves to automated map generation.

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 15

Automation Maturity Model
This paper provides a route map in the search for better test automation. It can be summarised in Figure

9, below, which provides a maturity model for test automation.

Figure 9: The Automation Maturity Model

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 16

Conclusions
• Test Automation is software engineering.

• Record/Playback automation inevitably hits limits of maintainability. It also does not provide a

code structure which leads to well tested code. This is because the automation LOC is proportional

to the number of tests.

• UI Object Map Approach allows scripting to be dropped from the picture altogether.

• Control Wrappers are the key to solving the maintenance and tested-ness problems.

• LOC not proportional to number of tests.

UI Object Map Automation Approach:

• Removes need for scripting.

• Reduces automation development time.

• Reduces automation maintenance.

• Provides highly tested automation code.

• Reduces risk: tried and tested automation frameworks.

__

Test Automation: From Record/Playback to Frameworks V1.0 ©Simply Testing Ltd 17

References
1. Bach, James: Test Automation Snake Oil—http://www.stlabs.com/

2. Paul Gerrard: Automated Testing: Past, Present and Future—Presentation at EuroStar’98.

3. Zambelich, Keith: Totally Data-Driven Automated Testing http://www.sqa-test.com/

4. Kent, John: Overcoming the Problems of Automated GUI Testing. Presentations to STAR 1994 and

British Computer Society SIGST Dec 1993.

5. Kent, John: An Automated Testing Architecture. Presentation to the British Computer Society SIGST

July 1997.

6. Kaner, Cem: Improving the Maintainability of Automated Test Suites—Quality Week 1997

7. Cusmano, Michael A. and Selby, Richard W. Microsoft Secrets: how the World’s Most Powerful

Software Company Creates Technology, Shapes Markets and Manages People. Harper Collins 1997

8. Arnold Thomas, R.II: Building an Automation Framework with Rational Visual Test—ST Labs

Report 1997

9. Arnold Thomas, R.II: Visual Test 6 Bible—IDG Books 1999

10. Buwalda, Hans Testing with Action Words—From Automating Software Testing (Chapter 22)—

Addison Wesley Longman, 1999

11. Pettichord, Brett: Success with Test Automation, Proceedings of the Ninth International Quality

Week (Software Research) 1996.

http://www.io.com/~wazmo/succpap.htm

12. Dwyer, Graham and Graham Freeburn: Business Object Scenarios: a fifth-generation approach to

automated testing—From Automating Software Testing (Chapter 22)—Addison Wesley Longman,

1999

13. Ottensooser, Avner: Data Independent Test Scripts—paper presented at STAR 1997.

14. Bach, James: Useful Features of a Test Automation System—printed in Thomas Arnold’s Software

Testing with Visual Test 4.0—IDG Books. Also http://www.stlabs.com/

15. Fewster, Mark and Graham, Dorothy : Software Test Automation, 1999 Addison-Wesley

16. Kent, John: Ghost in the Machine Parts 1-6, Professional Tester, 2002 to 2004

17. Nagle, Carl J: Test Automation Frameworks (Web).

18. Kent, John: Generation of Automated Test Programs Using System Models, Quality Week 1999,

and EuroSTAR 1999.

19. Hayes G. Linda: The Automated Testing Handbook

20. Michael Kelly: Choosing a Test Automation Framework - (Web)

21. Bass, Clements, and Kazman: Software Architecture in Practice, Addison-Wesley, 1997

22. Mosley, Daniel J and Posey, Bruce A: Just Enough Software Test Automation, Prentice Hall, 2002

23. Li, Kanglin and Wu, Mengqi: Effective GUI Test Automation, Sybex 2005

